- 7. Suppose G is a non-cyclic group of order 205 = 5 41. Give, with proof, the number of elements of order 5 in G.
- 8. Find **ALL** solutions *x* in the integers to the simultaneous congruences.

9.

- 12. Find, with brief justi cation, all ring homomorphisms from $Z \neq Z=12Z$.
- 13. Consider the ring of Gaussian integers Z[i].
 - (a) Prove that if = a + bi for $a; b \ge Z$ is a Gaussian integer with N() = p for p a prime of Z, then is irreducible.
 - (b) List all the units of Z[*i*].
 - (c) Give an example of a prime number $p \ge Z$ such that p is irreducible in Z[i]. Justify your answer by stating an appropriate result.
- 14. Let *D* be a square-free integer, and consider the quadratic number eld O(D) and its subring of integers *O*. Let $N : O(D) \neq Z$ denote the eld norm map which is multiplicative. The restriction of *N* to the ring of integers *O* will also denoted by *N*.
 - (a) Prove that an element 2O is a unit if, and only if, N() = 1.
 - (b) When D = 3, the ring of integers is $O = Z + Z \frac{1 + \frac{D-3}{2}}{2}$. Find a unit in $O \cap Z$.
 - (c) Let D = 5. Give, with proof, an example of an element $x = a + b^{D-5}$ for $a; b \ge Z$ such that x is irreducible, but x is not prime in Z[